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Abstract

The curing of a thermosetting powder coating was studied by means of differential scanning calo-

rimetry (DSC). The isothermal cure was simulated by non-isothermal experiments. The results of

the simulation were compared with experimental isothermal data. From non-isothermal isoconver-

sional procedures (free model), it was concluded that these permit simulation of the isothermal cure

but do not enable us to determine the complete kinetic triplet (A preexponential factor, E activation

energy, f(α) and/or g(α) function of conversion). Non-isothermal procedures based on a single heat-

ing rate or on master curves present difficulties for determination of all the kinetic parameters, due to

the compensation effect between preexponential factor and activation energy. The kinetic triplet can

be determined by a combination of various non-isothermal methods or by using experimental iso-

thermal data in addition to non-isothermal data.

Keywords: activation energy, compensation effect, isothermal kinetics, non-isothermal kinetics,
thermosetting powder coating

Introduction

Maximum properties are obtained for thermosetting coatings through a curing pro-
cess by temperature or ultraviolet light. Cure temperature is strongly influenced by
glass transition temperatures and by fusion of non-reticulate material, and also by vis-
cosity before and during the curing process. Normally, thermosetting powder coat-
ings are cured at temperatures oscillating between 130 and 220°C [1, 2]. These tem-
peratures are an obstacle to monitoring the process by means of isothermal
calorimetry. At high temperatures, heat is lost during stabilisation of the apparatus.
At low temperatures heat is released slowly but it falls below the apparatus’s sensitiv-
ity range. Furthermore, in these materials the exothermal heat released during curing
is relatively low (around 40 J g–1) [3]. Due to these difficulties, it may prove more
useful to study the cure dynamically and then simulate isothermal curing. Another
possibility is to monitor the cure indirectly, by dynamic scanning of partially isother-
mally cured samples. This procedure is effective but costly [4, 5].
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In general, the final objective of non-isothermal studies of reactive processes (cur-

ing, degradation, etc.) is to obtain kinetic parameters, which reproduce the isothermal

processes. So-called isoconversional procedures are based on the fact that a reaction

mechanism, at a given degree of conversion, does not vary with temperature. These

methods, both in their integral and differential forms, permit us to obtain two kinetic pa-

rameters for each degree of conversion, one being activation energy and the other related

to preexponential factor and to the function f(α) or g(α) [6–11]. Isoconversional methods

usually reproduce both non-isothermal and isothermal kinetic data correctly but do not

permit separation of preexponential factor from function f(α) or g(α). Furthermore, acti-

vation energy, may vary with the procedure employed [5, 12–14] and the set of dynamic

rates used, and usually depends on the degree of conversion [3, 14–17]. All this is usually

attributed to changes taking place during the reactive process and to the so-called com-

pensation effect. This compensation effect may either be real, i.e., the reflection of some

kinetic change, or imaginary [18–20]. The difficulty of determining these considerations

limits the acceptance of isoconversional methods [21].

Use of a single dynamic experiment to obtain kinetic parameters, usually leads

to serious errors because there are many mathematical solutions which reproduce the

experimental data [4].

Other methods are based on use of the function z(α)=f(α)g(α) which combines

integral and differential data. Through these methods it is possible to predict the func-

tion describing the reactive process, but the kinetic triplet can only be determined if

the true value of the activation energy is previously known and if it remains constant

throughout the reactive process [22, 23].

Finally, there are methods, both non-isothermal and isothermal, which are based

on the time-temperature superposition principle. Through these methods it is possible

to determine activation energy and generate a master curve for the data obtained by

any thermal analysis technique. The time-temperature superposition principle is ap-

plicable in systems in which the entire reactive process can be described with a single

activation energy and f(α) is only a function of the conversion degree and is inde-

pendent of the temperature. In this procedure, activation energy is proportional to the

shift factor [4, 24, 25].

For this work, non-isothermal cures were carried out, the isothermal cures were

simulated by various procedures and the results were compared with those obtained

isothermally from partially cured samples.

Experimental

The powder coating studied is a physical blend of a lightly branched carboxyl-

terminated polyester and triglycidylisocyanurate (TGIC), with a polyester/TGIC

mass proportion of 93/7 (Cray Valley, 4704). The polyester has a functionality of

f=2.3, an acid number of 33 and an Mn=3910, while the TGIC has f=3 and Mn=297. In

general, these coatings were cured at temperatures approaching those of industrial

curing, higher than Tg∞.
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Calorimetric analysis was carried out using a Mettler-Toledo DSC30 calorimeter.
The mass of the samples was approximately 10 mg. All of the samples were cured in a ni-
trogen atmosphere. Dynamic curing was carried out at rates of 2, 3, 4, 6, 7.5, 10, 15
and 20°C min–1 from –50 to 250°C. In the dynamic curing processes the degree of con-
version, α and the reaction rate, dα/dt, were calculated as:

α α= =∆
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where ∆HT is the heat released up to a temperature T, obtained by integration of the calo-
rimetric signal up to that temperature, (dH/dt)T is the rate of heat generation and is the di-
rect calorimetric signal at a temperature T and ∆Hdyn is the total reaction heat associated
with complete conversion of all reactive groups. A value of 37.5 J g–1 was taken for
∆Hdyn, calculated as the average value for heat reaction obtained dynamically at the dif-
ferent rates of heating. Isothermal curing was carried out for different times at tempera-
tures of 120, 135, 150, 165 and 180°C. After curing, the sample was cooled and by means
of a dynamic scan at 10°C min–1 the residual heat was determined.

The isothermal degree of conversion was calculated on the basis of residual heat as:

α =1–
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where ∆Ht, res is the residual heat obtained after isothermal curing up to a time t.

Theoretical analysis

Accepting that rate of conversion, dα/dt, depends on the temperature and the advance
of the reaction and that the Arrhenius equation is met, non-isothermal kinetic analysis
may start with the kinetic equation:
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where A is preexponential factor, E activation energy, R universal gas constant,
T temperature and f(α) is a function of degree of conversion which depends on the
mechanism governing the reactive process.

By reordering, we can write the so-called temperature integral:
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where β is the heating rate and g(α) an integral function of the degree of conversion.
Equation (4) may be integrated employing Doyle’s approach [26] and rewritten

in logarithm form as:
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This equation applied to constant conversion, enables us to determine E and the

kinetic parameter Aα,int (Ozawa method [7]) for each degree of conversion.

By using the Coats–Redfern [9] approximation for resolution of Eq. (4) and con-

sidering that 2RT/E«1 may be written:
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for a given kinetic model, linear representation of ln[g(α)/T 2] vs. 1/T permits us to

determine E and A from the slope and the ordinate in the origin.

Reordering Eq. (6) we can write:
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Linear representation of ln[β/T 2] vs. 1/T permits determination of E and the ki-

netic parameter ′Aα,int , for each conversion degree. This isoconversional procedure is

equivalent to Kissinger’s method [27] and comparable to Ozawa’s method.

Integration of Eq. (4) in isothermal experiments gives the expression:
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where t is cure time. It can be observed how the non-isothermal parameters ′Aα,int and

Aα,int are directly related to the isothermal parameter Aα,iso,int. By using the non-iso-

thermal kinetic data from Eqs (5) and (7) it is possible to determine the isothermal pa-

rameters of Eq. (8) and then simulate the isothermal cure.

By combining Eqs (3) and (6) without logarithms and as described by Criado [22],

we can obtain reduced master curves of the type:
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where 0.5 refers to the conversion of 0.5.

The left side of Eq. (9), f(α)g(α)/f(0.5)g(0.5), is a reduced theoretical curve

which is characteristic of each reaction mechanism, whereas the right side of the

equation associated to reduced rate can be obtained from experimental data. Compar-

ison of both sides of Eq. (9) tells us which kinetic model describes an experimental

reactive process.

If the true value of the activation energy is known, then the kinetic model can be

determined by means of the procedure employed by Criado et al. [23], based on the

function:

z f g
t

x T( ) ( ) ( ) ( )α α α α
β

π= =d /d
(10)
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where x=E/RT and π(x) is an approximation of the temperature integral which can be ex-

pressed in its analytical form. In this we shall use the fourth rational expression of Senum

and Yang [28]. Equation z(α)=f(α)g(α) can be used to obtain the master curves as a func-

tion of the degree of conversion for different models. By plotting the graph of the right

side of Eq. (10) on the basis of the experimental data and comparing the graph with the

master curves, it is possible to determine the mechanism governing the process.

We have recently presented a new isoconversional methodology combining the

differential and integral methods. From the isoconversional lines obtained from

Eq. (5) and Eq. (3) in logarithms, it is possible to obtain the kinetic model which best

describes a process, by making all the E and A values, both integral and differential,

lie on a single compensation line. Variation of the degree of conversion or the set of

heating rates selected, enables us to see that a compensation effect exists. Details of

this methodology can be found in [3].

Results and discussion

Figure 1 shows the degree of conversion vs. the temperature for coating cure at various

heating rates. The degrees of conversion have been obtained by integration of the exo-

thermal calorimetric peak by means of Eq. (1). Some dynamic DSC curves for the coat-

ing used can be found in one of our earlier paper [3]. By application of Eqs (5) and (7) to

the curves in Fig. 1, the kinetic parameters have been obtained at different degrees of

conversion. Table 1 sets out the results obtained for each method and the isothermal pa-

rameters which can be derived for these through Eq. (8). Figure 1 also shows the α-T

curves simulated by using parameters obtained with Eq. (5) (Table 1). By the quality of

the regressions and simulations obtained, it can be concluded that the two

isoconversional methods correctly describe the non-isothermal cure. Table 1 shows how

the kinetic parameters vary at the start of curing, and then, in conversions above 20%, re-
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Fig. 1 Experimental and simulated degrees of conversion vs. temperature for
non-isothermal curing. Heating rates of 2, 3, 4, 6, 7.5, 10, 15 and 20 K min–1 are
shown. The solid lines represent the experimental data and the symbols corre-
spond to the data calculated by using the parameters obtained with Eq. (5)



main practically constant. Figure 2 compares the experimental isothermal curves, degree

of conversion vs. time of curing, α-t, with the simulated by means of various methodolo-

gies. In general, it can be observed how isoconversional simulation, on the basis of the

data obtained through Eqs (5) and (7) correctly describes the isothermal cure. However,

this procedure does not permit us to determine the mechanism governing the curing pro-

cess. The small differences observed between both isoconversional methods (Table 1 and

Fig. 2) must be attributed to the different solution of the temperature integral.

Table 1 Non-isothermal and isothermal kinetic parameters at different degrees of conversion, ob-
tained using Eqs (5) and (7) at various heating rates

α
Eq. (5) Eq. (7)

Aα,int/
K min–1 r

E/
kJ mol–1

Aα,iso,int/
min

′Aα ,int /
K–1min–1 r

E/
kJ mol–1

Aα,iso,int/
min

0.05 23.21 0.958 163.5 –48.88 39.47 0.965 165.3 –49.36

0.10 18.54 0.989 132.0 –38.35 28.66 0.987 132.1 –38.33

0.20 14.80 0.992 107.0 –29.95 20.00 0.991 105.6 –29.45

0.30 13.50 0.995 98.9 –27.03 16.96 0.994 96.9 –26.33

0.40 12.83 0.996 95.0 –25.53 15.38 0.996 92.8 –24.71

0.50 12.43 0.997 93.2 –24.63 14.44 0.997 90.8 –23.74

0.60 12.18 0.997 92.5 –24.06 13.84 0.996 89.9 –23.13

0.70 11.94 0.996 91.9 –23.51 13.25 0.996 89.1 –22.53

0.80 11.75 0.995 91.8 –23.08 12.79 0.995 88.9 –22.07

0.90 11.64 0.992 93.0 –22.81 12.50 0.991 90.0 –21.79

0.95 11.65 0.988 94.6 –22.81 12.48 0.987 91.5 –21.79

Aα,iso,int was calculated by means of Eq. (8) using the kinetic parameters obtained from Eqs (5) and (7)

In order to establish the kinetic model, the Coats–Redfern method (Eq. (6)) was em-

ployed. Table 2 summarises the results obtained at a curing rate of 10 K min–1 for the dif-

ferent models tested. In general, it can be observed how all the functions present good re-

gressions, with the exception of models F2, F3 and power, which are slightly inferior. This

would seem to indicate, first of all, that any model serves to describe the curing process if

it is combined correctly with E and A. Figure 3 shows lnA vs. E according to the model

used. The compensation effect between both parameters can be seen and how all the ki-

netic data are grouped on a compensation line of the type:

lnAξ= aEξ+b (11)

where ξ represents any factor which produces changes in the Arrhenius parameters.

Here, the factor would be the kinetic model. It is clear that the detected compensation

effect is imaginary since the models proposed have different forms (f(α) or g(α)) and

cannot therefore adequately describe the cure even if activation energy and pre-

exponential factor are changed. Specifically, f(α) is proportional to the isothermal
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Fig. 2 Experimental and simulated degrees of conversion vs. curing times for samples cured at dif-
ferent temperatures. Curing temperatures of 180, 165, 150, 135 and 120°C are shown.
— – curves obtained by using function f(α)=αm(1–α)n with n+m=2 and n=1.9 and kinetic
parameters contained in Table 2. – – – –curves obtained by using function f(α)=αm(1–α)n

with n+m=2 and n=1.9 and compensation equation (Eq. (11)) with a=0.2972 and
b=3.2707. l – experimental isothermal curves,£ – curves calculated by Eq. (8) with ki-
netic parameters obtained by Eq. (5), o – curves calculated by Eq. (8) with kinetic parame-
ters obtained by Eq. (7). Triangles represent the simulation at 180°C using different kinetic
models (Table 2)

Fig. 3 Compensation curves lnA=aE+b associated with each factor, indicated in the fig-
ure, producing a change in the Arrhenius parameters. £ – kinetic parameters de-
termined at a rate of 10 K min–1, for the different models, using the
Coats–Redfern method (Eq. 6), ¢ – kinetic parameters determined, for different
degrees of conversion, using the integral-differential isoconversional method,
l – kinetic parameters determined, for different heating rates, using the
Coats–Redfern method (Eq. 6), o – kinetic parameters determined, for different
degrees of conversion, using the isoconversional method of Eq. (7). For (¢), (l)
and (o), f(α)=αm(1–α)n was used with n+m=2 and n=1.9



rate and g(α) to the isothermal time. In addition, some values of E are very far from

those which could be associated with the true value of E for the curing process. Fig-

ure 2 plots the graph for the α-t curve obtained from the Table 2 data at a temperature

of 180°C for some of the models used. For the system used, it can be seen clearly that

only some of the autocatalytic (f(α)=αm(1–α)n) or n order models (f(α)=(1–α)n) cor-

rectly reproduce the isothermal cure. This indicates that in the absence of further ex-

perimental data, the Coats–Redfern procedure (Table 2) does not enable us to discern

which mechanism governs the reactive process.

Table 2 Algebraic expressions for f(α) and g(α) for the kinetic models used and Arrhenius pa-
rameters determinated by Coats–Redfern’s method (Eq. (6))

Models f(α) g(α) E/kJ mol–1 lnA/min–1 r

A2 2(1–α)[–ln(1–α)]1/2 [–ln(1–α)]1/2 30.1 6.12 0.999

A3 3(1–α)[–ln(1–α)]2/3 [–ln(1–α)]1/3 17.6 2.31 0.998

R2 2(1–α)1/2 [1–(1–α)]1/2 55.7 12.50 0.996

R3 3(1–α)2/3 [1–(1–α)]1/3 59.4 13.22 0.997

D1 1/2(1–α)–1 α2 99.4 24.44 0.991

D2 –ln(1–α) (1–α)ln(1–α)+α 118.5 30.31 0.995

D3 3/2(1–α)2/3[1–(1–α)]–1/3 [1–(1–α)1/3]2 126.3 30.22 0.998

D4 3/2(1–α)1/3[1–(1–α)]–1/3 (1–2/3α)(1–α)2/3 116.2 27.25 0.996

F1 (1–α) –ln(1–α) 67.5 16.76 0.999

F2 (1–α)2 (1–α)–1 43.9 11.33 0.971

F3 1/2(1–α)3 (1–α)–2 95.3 26.76 0.975

power 2α1/2 α1/2 19.3 2.59 0.983

n+m=2;
n=1.9

α0.1(1–α)1.9 [(1–α)α–1]–0.9(0.9)–1 86.8 22.78 0.999

n+m=2;
n=1.5

α0.5(1–α)1.5 [(1–α)α–1]–0.5(0.5)–1 44.9 11.46 0.997

n=1.5 (1–α)1.5 2[–1+(1–α)–1/2] 81.4 20.90 1.000

n=2 (1–α)2 –1+(1–α)–1 97.3 25.60 0.999

n=3 (1–α)3 2–1[–1+(1–α)–2] 134.1 36.38 0.994

To attempt to determine the exact kinetic model underlying the cure, we used the
methods based on master curves proposed by Criado. Figure 4 presents the graph of
the reduced master curves according to Eq. (9) for different models and they were
compared with those obtained experimentally at different heating rates. It can be ob-
served how the method enables us to discern some mechanisms. In the case of the
system studied, the functions in best agreement are types n+m=2, n=1.5 and n=2.
Some of these models remain grouped within the same master curve and therefore it
would not be possible to differentiate them. Models such as D3 and R3 or F1 and A2,
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which are completely different, are also grouped within a single curve and cannot
therefore be discriminated either. This indicates that the methodology employed
gives a general indication as to the model but additional kinetic information is re-
quired in order to be able to always specify it. If the true value of the activation en-
ergy is known, it is always possible to specify the kinetic model. We take the true
value of the activation energy as 90 kJ mol–1 estimated from the isoconversional data
(Eq. (7)) in the range of conversions in which they remain almost constant. Of the
models presenting a master curve (Fig. 4) similar to the experimental one, those
which have an E, determined by the Coats–Redfern method, which is similar to the
true value, are those that describe the reactive process. For the system studied, the
function of conversion with n+m=2 where n=1.9 is the one which best meets these re-
quirements and will be considered as the model describing the cure. Figure 2 shows
how this model, using the data obtained through Eq. (6), correctly define the experi-
mental isothermal data. Other models such as n=2 which presents a master curve
which is equal to that of model n+m=2 (where n=1.9) and a similar E also provide an
acceptable description of the isothermal cure.

With this same approach, if the true value of the activation energy is known,

Eq. (10) can be used to establish the kinetic model. Figure 5 shows the graph of the

master curves z(α)–α for different models and the experimental master curve for a

rate of 10 K min–1 taking true value of E as 90 kJ mol–1. Again, it is the function

n+m=2 (where n=1.9) that is in best agreement with the experimental data, although

similar models such as n=1.5 and n=2 are also correct. Figure 5 also shows the experi-

mental curve using the activation energy (Table 2) obtained for model A2

(E=30.1 kJ mol–1). This model, as we have seen, is part of a family that does not re-

produce the cure (Fig. 2). It can be seen that the experimental data are in fairly good

agreement with the master curve for the model whose activation energy is being used

(A2). This occurs when the form of z(α)–α does not differ greatly from that of the real
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Fig. 4 Reduced master curves of different kinetic models and experimental data at dif-
ferent heating rates calculated by Eq. (9)



model. It can therefore be concluded that if the activation energy is not known, it is

not possible to define the kinetic model with this methodology.

By means of the integral-differential isoconversional method described in the

authors’ previous paper [3] it was found that the model which best described the cure

was n+m=2 (where n=1.9) and E and A were grouped, when α was varied, in a

straight compensation line (Eq. (11)) with a=0.2972 and b=3.2707. Using these ki-

netic data, the isothermal cure was simulated (Fig. 2) and the straight compensation

line was represented (Fig. 3). It can be seen how the methodology provides a reason-

able description of the isothermal cure but does not define the true value of activation

energy but rather a relation between E and A.

For a function of the type n+m=2 (where n=1.9) E and A were calculated, at dif-

ferent heating rates, through Eq. (6). Also, E and A were calculated for this same

function but based on the isoconversional data obtained from Eq. (7) (Table 1). The

results obtained in both cases are set out in Fig. 3. It can be observed how there is a

compensation effect between E and A when heating rate and degree of conversion are

varied. Figure 4 shows that there are slight variations in the model describing the pro-

cess with changes in heating rate and degree of conversion. In Fig. 5 it can also be ob-

served how the model which best describes the cure does not do so for its entire

length. All these considerations may incline one to think that the reaction mechanism

varies slightly with degree of conversion and heating rate and that, therefore, isocon-

versional methods and methods employing master curves are not entirely accurate.

Despite this, since the variations are very slight, the procedures may be considered to

be acceptable as a first step. If a more accurate description of activation energy and

the kinetic model is required, isothermal data should be employed to eliminate the ef-

fect of heating rate and it must be determined whether activation energy and the

mechanism depend on the degree of conversion or not.
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Fig. 5 Master curves z(α)–α of different kinetic models and experimental data at
10 K min–1 calculated by Eq. (10). ¢ – experimental data using E=90 kJ mol–1,
l – experimental data using E=30.1 kJ mol–1 (model A2)



We know that the separation between isothermal curves is related to the true

value of E. Therefore, the necessary shift factor lnaT in order to shift an isothermal

curve towards a reference temperature Tr, can be obtained from Eq. (8) as:

ln ln – ln –a t t
E

R T T
T r

r

= = 









1 1
(12)

where tr is the time necessary to reach the conversion degree at Tr. For our experimen-

tal data and taking reference temperature as 150°C, the isothermal curves (Fig. 2) dis-

place almost completely with a single shift factor. The activation energy associated

with this shift factor (Eq. (12)) takes a value close to 90 kJ mol–1. This result permits

us to conclude that choice of a single model such as n+m=2 (where n=1.9) for the en-

tire curing process, along with the use of the kinetic data associated with this process

(Table 2) is a good procedure for characterisation of the isothermal cure. In addition,

choosing the true value of activation energy on the basis of non-isothermal isocon-

versional data would also seem to be correct.

Conclusions

Use of a single non-isothermal method for simulation of the isothermal cure may lead

to errors due to the existence of a compensation effect between the activation energy

and the preexponential factor. This effect was detected when varying the curing rate,

kinetic model or degree of conversion. The results lead us to believe that these effects

are fictitious and do not reflect kinetic changes.

For correct determination of the kinetic triplet, a combination of various non-iso-

thermal methods is required or else combined use of non-isothermal and isothermal data.

For example, the true value of activation energy may be obtained on the basis of two iso-

thermal experiments or by means of non-isothermal isoconversional methods.

Once the true value of the activation energy is known, the remainder of the ki-

netic triplet can be determined unambiguously by means of the Coats–Redfern

method or the kinetic model by the procedures based on master curves.
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